微积分的力量
荐语
你将获得
作者简介
精彩选段
本书籍解读制作团队
读完本文约需5分钟
以下为《微积分的力量》音视频演讲实录的部分内容,成为樊登讲书VIP即可获得全部内容。
感谢您能点开这本书,因为这本书的书名,有点拒人千里之外,叫作《微积分的力量》。我在选择要讲这本书的时候,我们团队的人都觉得我疯了,说怎么可能有那么多的人想知道微积分是怎么回事呢?但是我觉得这是我们的责任。我们如果能让中国人更多地了解什么是微积分,更多地知道微积分对这个世界所产生的影响,我们的社会一定会变得不一样。
我个人其实不是一个特别喜欢学微积分的人,我当年上学的时候也是硬着头皮考过了试,考了80多分吧。但是我在读完了这本书以后,我对我的行为表示后悔,如果我当年早点知道这本书里的内容,我一定会更爱数学,我一定会更希望把数学学好。所以这本书应该让更多的年轻人读到,大家才会知道数学是如此美妙。
我们现在所能见到的现代社会的种种方便,比如坐高铁、坐飞机、打电话、用全球定位系统(GPS)出行、用网站……它背后有很多算法,都是来自微积分的发明。没有微积分,这些事情都无法实现。
你想想看,没有微积分的数学是什么数学呢?我们只能算匀速直线运动,匀速的我们可以算,变动的算不了了。这一个炮弹打出去,砰——到底打多远?它的速度从出膛到落地是不一样的。所以没有微积分这样的工具,你无法准确地知道位置在哪儿,你只能算平均数,看平均的速度大概是多少,瞬时速度是不知道的。
所以没有微积分,这些东西都无法实现。包括我们现在抗癌、抗艾滋病所用到的医学方法,全都是用数学的方式计算出来的。所以微积分被称作是上帝的语言,如果你不了解微积分,根本读不懂这个世界。
这本书的作者,是康奈尔大学的应用数学系教授。他特别擅长把数学写得让大家能看得懂,所以我今天也会在他的基础之上再简化,把公式的部分尽量减少,让所有完全没有听过微积分的人能知道微积分有多么了不起,并且知道微积分到底是什么。
那么什么是微积分?微积分就是想让复杂的问题变得简单的一个方法。世界比我们想象得复杂得多,比如说这个杯子的形状,不是一个简单的形状,它很复杂。如果我们只用简单的平面几何、立体几何,是无法计算清楚的。但是微积分就有办法让它简单化,这个过程就是微积分的总体思路。它的方法是什么呢?就是把复杂的问题切分成多个简单的部分,切分到什么程度?到无穷的程度。
如果你脑子里边能稍微加入一点点想象力,加入一个无穷的概念,就能立刻理解微积分是怎么回事。我举一个例子,您一定知道古人很想研究圆。因为古人的测量都是为了分地,那个地未必都是方的,有时候会有那种弧形的、圆形的,所以古人就想了解圆到底应该怎么算。
周长大家比较容易了解,周长就是我做一个圆形的饼,我拿一根绳子绕着它这么转一圈,然后把这个绳子拿出来一量,就知道这个圆的周长了。所以基本上古人是可以测量得出一个圆的周长的。那怎么测量这个圆的面积?不能用绳子去测量圆的面积,所以我们就必须得发现圆的面积公式。
大家学过周长的公式,叫作π×d。πd是怎么算出来的呢?把周长测出来,然后把直径测出来,用周长除以直径,得到的数就是π,所以π就是圆周率。那你有没有想过为什么面积会是πr²,而不是πd²?这就是微积分的思想。你想象这是一个圆,我想知道它的面积,怎么办呢?你想象像切西瓜一样,沿着它的中心,切成一牙一牙的西瓜。然后你把它掰开,上半截就变成了一个向下的锯齿,下半截就变成了一个向上的锯齿。然后你把上半截和下半截对在一块儿,成了一个什么形状呢?类似于一个长方形。
但是这个长方形的上边不是一条直线,而是一个一个的弧度。那假如你把这个西瓜切到非常薄,薄到极限,那个弧度是不是就变成了一个一个的点?用弧度构成的这条边,是不是就变成了一条趋近于直线的东西?
这时候你发现,圆如果可以被切到无穷块,那它将会成为一个相当标准的矩形。请问这个矩形的高是多少呢?是半径。那个长的一边呢?是二分之一个周长,也就是πd÷2。πd÷2不就是πr吗?再乘以半径,得出是πr²。现在大家知道πr²是怎么来的了吗?就是通过切分想象出来的。所以古人能通过切分到无穷的程度,想象出来这么一个构造,解决了测量圆面积的问题,这就是微积分的思想。
虽然它还没有用到牛顿和莱布尼茨发明的微积分的手段,但这就是微积分的思想。所以微积分的实质就是切分和重组,切分的过程叫微分,重组在一起叫积分。就这么简单,所以大家千万不要觉得这是一件特别遥不可及的事。